Selasa, 06 Maret 2012

Pembuatan Insulin dengan Teknik DNA Rekombinan


BAB I
Pendahuluan

1.1       Latar Belakang
Secara etimologi insulin berasal dari bahasa latin “insulan” yang berarti pulau. Secara umum insulin adalah suatu hormon yang diproduksi oleh sel beta pulau Langerhans Kelenjar Pankreas. Insulin adalah hormon yang mengubah glukosa menjadi glikogen yang berfungsi mengatur kadar gula darah bersama hormon glucagon. Sebelum ditemukan tehnik sintesis insulin. Hormon ini hanya bisa diperoleh dari insulin pancreas babi atau sapi dan sangat sedikit insulin bisa diperoleh.  Insulin dari pancreas hewan secara umum memang memuaskan tetapi untuk penggunaan pada manusia dapat menimbulkan dua masalah. Pertama, adanya perbedaan kecil dalam asam amino penyusunya yang dapat menimbulkan efek samping berupa alergi pada beberapa penderita. Kedua, prosedur pemurnian sulit dan cemaran berbahaya asal hewan dapat di hilangkan secara sempurna.

Perbedaan susunan asam amino pada insulin manusia, babi (pork), dan sapi (beef)
Spesies
A8
A10
B28
B29
B30
Manusia
Thr
Ile
Pro
Lys
Thr
Babi
Thr
Ile
Pro
Lys
Ala
Sapi
Ala
Val
Pro
Lys
Ala

Insulin manusia dan insulin babi hanya beda 1 asam amino yaitu pada B30, sedangkan insulin manusia dan insulin sapi beda 3 asam amino yaitu pada A8, A10, dan B30 sehingga pemakaian insulin babi kurang imunogenik dibandingkan insulin sapi. Tapi masalahnya, 1 babi yang diekstraksi insulinnya hanya cukup untuk 1 orang selama 3 hari padahal saat ini ada ± 60 juta orang di dunia yang menderita diabetes tergantung insulin dan diduga meningkat 5-6 % per tahunnya. Maka dari itu sekarang banyak dikembangkan teknologi rekombinan untuk mendapatkan insulin.
Pada tahun 1981 telah terjadi perbaikan secara berarti cara produksi insulin melalui rekayasa genetika. Insulin yang diperoleh dengan cara ini mempunyai struktur mirip dengan insulin manusia. Melalui teknologi DNA rekombinan, insulin diproduksi menggunakan sel mikroba yang tidak pathogen. Karena kedua hal tersebut diatas insulin hasil rekayasa genetika ini mempunyai efek samping yang relative sangat rendah dibandingkan insulin yang diperoleh dari ekstrak pancreas hewan, tidak menimbulkan efek alergi serta tidak mengandung kontaminan berbahaya. Pembuatan insulin dari bahan berupa makhluk hidup menunjukan tanda-tanda kekuasaan Allah swt sesuai firman Allah swt dalam surat An-Nahl ayat 5 yang artinya.

تَأْكُلُونَ وَمِنْهَا وَمَنَافِعُ دِفْءٌ فِيهَا لَكُمْ خَلَقَهَا وَالأَنْعَامَ


“Dan Dia telah menciptakan binatang ternak untuk kamu, padanya ada (Bulu yang menghangatkan dan berbagai bagai manfaat dan sebahagianya kamu makan”.
Hormon insulin yang diproduksi oleh tubuh kita dikenal juga sebagai sebutan Insulin Endogen namun ketika kelenjar pancreas mengalami gangguan sekresi guna memproduksi hormon insulin, disaat inilah tubuh membutuhkan hormon insulin dari luar tubuh yang berupa obat buatan manusia atau dikenal juga sebagai sebutan Insulin Eksogen. Kekurangan insulin dapat menyebabkan penyakit seperti diabetes mellitus tergantung insulin (diabetes tipe 1). Insulin terdiri dari 51 asam amino. Molekul insulin disusun oleh 2 rantai polipeptida A dan B yang dihubungkan dengan ikatan disulfida. Rantai A terdiri dari 21 asam amino dan rantai B terdiri dari 30 asam amino.
Produk hormon insulin manusia dapat dihasilkan dari teknik rekayasa genetika dengan teknologi Plasmid. Insulin adalah hormon yang berfungsi menurunkan kadar gula dalam darah. Hormon ini sangat diperlukan oleh penderita diabetes mellitus karena kelenjar pankreas penderita tidak mampu menghsilkan hormone tersebut. Hormon insulin berfungsi untuk mengubah glukosa dalam darah menjadi glikogen.
1.2 Batasan Masalah
Masalah yang dibahas dalam makalah ini adalah :
·         Pembuatan Insulin dengan rekayasa genetika dalam hal ini adalah DNA rekombinan (Biologi sel)
·         Peran Insulin dalam bidang kefarmasian yaitu untuk pengobatan Diabetes Melitus
1.3 Rumusan Masalah
·         Apa itu insulin?
·         Bagaimana proses pembuatan insulin dengan rekayasa genetika?
·         Apa fungsi insulin?
1.4 Tujuan Penulisan
Tujuan dari penulisan makalah ini adalah :
·         Mengetahui peran biologi sel dalam bidang kefarmasian dalam makalah ini yaitu pembuatan insulin
·         Mengetahui bagaimana proses pembuatan insulin secara rekayasa genetika tidak lagi dengan pankreas hewan
·         Mengetahui pemberian insulin kepada penderita Diabetes Melitus
·         Mengetahui cara kerja insulin terhadap manusia
·         Meningkatkkan iman kita kepada Tuhan Yang Maha Esa, karena ditemukannya insulin diluar pankreas hewan
1.5  Metode Pengumpulan Data
Data penulisan makalah ini  diperoleh dari studi kepustakaan . Metode  studi kepustakaan yaitu suatu metode dengan membaca  telaah pustaka yanag berkaitan dengan hormone insulin, mikrobiologi dan rekayasa genetika. Selain itu penulis juga memperoleh data dari internet.









BAB II
TEORI DASAR
Insulin adalah suatu hormon yang diproduksi oleh sel beta pulau langerhans kelenjar pankreas. insulin menstimulasi pemasukan asam amino kedalam sel dan kemudian meningkatkan sintesa protein. Insulin meningkatkan penyimpanan lemak dan mencegah penggunaan lemak sebagai bahan energi. Insulin menstimulasi pemasukan glukosa ke dalam sel untuk digunakan sebagai sumber energi dan membantu penyimpanan glikogen di dalam sel otot dan hati. Insulin endogen adalah insulin yang dihasilkan dari pankreas, sedangkan insulin eksogen adalah insulin yang disuntikan dan merupakan suatu produk farmasi.
Insulin adalah suatu hormon yang diproduksi oleh sel beta dari pulau-pulau langerhans kelenjar pankreas. Insulin dibentuk dari proinsulin kemudian di stimulasi, terutama oleh peningkatan kadar glukosa darah akan terbelah untuk menghasilkan insulin dan peptide penghubung ( C-peptide) yang masuk kedalam aliran darah dalam jumlah ekuimolar. Sejumlah proinsulin juga akan masuk kedalam aliran darah. Kadar C-peptide dapat digunakan untuk memantau insulin produksi insulin endogen dan dapat digunakan untuk menyingkirkan penggunaan insulin secara faktisia sebagai penyebab hipoglikemia yang tidak dapat dijelaskan. Karena insulin dan C-peptide mempunyai jangka waktu yang berbeda, maka kadar C-peptide tidak seluruhnya mencerminkan secara akurat kadar insulin endogen. Insulin adalah suatu polipeptida yang mengandung dua rantai asam amino yang dihubungkan oleh jembatan disulfida. Insulin dibentuk di retikulum endosplasma sel β. Insulin kemudian dipindahkan ke aparatus golgi dalam granula-granula berlapis membran. Granula-granula ini bergerak ke dinding sel melalui suatu proses yang melibatkan mikrotubulus dan membran granula, mengeluarkan insulin ke eksterior melalui eksositosis. Insulin kemudian melintasi lamina basalis sel β serta kapiler dan endotel kapiler yang berpori mencapai aliran darah. Waktu paruh insulin dalam sirkulasi pada manusia adalah sekitar lima menit. Insulin berikatan dengan reseptor insulin lalu mengalami internalisasi.
Indikasi terapi dengan insulin :
  • Semua penyandang DM tipe I memerlukan insulin eksogen karena produksi insulin oleh sel beta tidak ada atau hampir tidak ada.
  • Penyandang DM tipe II tertentu mungkin membutuhkan insulin bila terapi jenis lain tidak dapat mengendalikan kadar glukosa darah.
  • Keadaan stress berat, seperti pada infeksi berat, tindakan pembedahan, infark miokard akut atau stroke.
  • DM gestasional dan penyandang DM yang hamil membutuhkan insulin bila diet saja tidak dapat mengendalikan kadar glukosa darah.
  • Ketoasidosis diabetik.
  • Hiperglikemik hiperosmolar non ketotik.
  • Penyandang DM yang mendapat nutrisi parenteral atau yang memerlukan suplemen tinggi kalori, untuk memenuhi kebutuhan energi yang meningkat, secara bertahap akan memerlukan insulin eksogen untuk mempertahankan kadar glukosa darah mendekati normal selama periode resistensi insulin atau ketika terjadi peningkatan kebutuhan insulin.
  • Gangguan fungsi ginjal atau hati yang berat.
  • Kontra indikasi atau alergi terhadap obat hipoglikemi oral.




Berdasarkan lama kerjanya, insulin dibagi menjadi 4 macam, yaitu:
1. Insulin kerja singkat
Yang termasuk disini adalah insulin regular ( Crystal Zinc Insulin / CZI ). Saat ini dikenal 2 macam insulin CZI, yaitu dalam bentuk asam dan netral. Preparat yang ada antara lain : Actrapid, Velosulin, Semilente. Insulin jenis ini diberikan 30 menit sebelum makan, mencapai puncak setelah 1-3 macam dan efeknya dapat bertahan sampai 8 jam.
2. Insulin Kerja Menengah
Yang dipakai saat ini adalah Netral Protamine Hegedorn ( NPH ), MonotardÒ, InsulatardÒ. Jenis ini awal kerjanya adalah 1.5 – 2.5 jam. Puncaknya tercapai dalam 4 – 15 jam dan efeknya dapat bertahan sampai dengan 24 jam.
3. Insulin kerja panjang
Merupakan campuran dari insulin dan protamine, di absorsi dengan lambat dari tempat penyuntikan sehingga efek yang dirasakan cukup lama, yaitu sekitar 24 – 36 jam. Preparat: Protamine Zinc Insulin ( PZI ), Ultratard.
4. Insulin infasik ( campuran )
Merupakan kombinasi insulin jenis singkat dan menengah. Preparatnya: Mixtard 30 / 40.



Fungsi insulin
Insulin mempunyai beberapa pengaruh dalam jaringan tubuh. Insulin menstimulasi pemasukan asam amino kedalam sel kemudian meningkatkan sintesa protein. Insulin meningkatkan penyimpanan lemak dan mencegah penggunaan lemak sebagai bahan energi. Insulin menstimulasi pemasukan glukosa kedalam sel untuk digunakan sebagai sumber energi dan membantu penyimpana glikogen didalam sel otot dan hati. Insulin endogin adalah insulin yang dihasilkan oleh pankreas, sedang insulin eksogin adalah insulin yang disuntikkan dan merupakan suatu produk farmasi.
Insulin adalah hormon yang mengendalikan gula darah. Tubuh menyerap mayoritas karbohidrat sebagai glukosa ( gula darah ). Dengan meningkatnya gula darah setelah makan, pankreas melepaskan insulin yang membantu membawa gula darah ke dalam sel untuk digunakan sebagai bahan bakar dalam proses metabolism atau disimpan sebagai lemak apabila kelebihan. Orang-orang yang punya kelebihan berat badan atau mereka yang tidak berolahraga sering kali menderita resistensi insulin. Insulin menjaga keseimbangan glukosa dalam darah dan bertindak meningkatkan pengambilan oleh sel badan. Kegagalan badan untuk menghasilkan insulin, atau jumlah insulin yang tidak mencukupi akan menyebabkan glukosa tidak dapat masuk ke dalam sel untuk proses metabolisme. Sehingga glukosa dalam darah meningkat dan menyebabkan diabetes mellitus. Pada kodisi normal, pankreas mempunyai kemampuan untuk menyesuaikan jumlah insulin yang dihasilkan dengan intake karbohidrat, tetapi pada penderita diabetes mellitus fungsi pengaturan ini hilang sama sekali. Pengaturan fisiologi kadar glukosa dalam darah sebagian besar tergantung dari : ekstrasi glukosa, sintesis glikogen dan glikogenesis dari metabolisme di dalam hati. konsentrasi gula darah yang konstan perlu di pertahankan karena glukosa merupakan satu-satunya zat gizi yang dapat digunakan oleh otak, retina, dan epitel germaninativum dalam jumlah cukup yang menyuplai energi sesuai dengan yang dibutuhkannya. Oleh karena itu, perlu mempertahankan konsentrasi glukosa darah pada kadar yang seimbang. Setelah masuk ke dalam tubuh, zat gula akan diedarkan ke seluruh sel tubuh melalui aliran darah. Kelebihan zat gula karena kurangnya aktivitas akan disimpan oleh tubuh. Bagi mereka yang kurang melakukan aktivitas, kelebihan zat gula akan disimpan dalam bentuk lemak.
Pengertian Teknologi DNA Rekombinan
Secara klasik analisis molekuler protein dan materi lainnya dari kebanyakan organisme ternyata sangat tidak mudah untuk dilakukan karena adanya kesulitan untuk memurnikannya dalam jumlah besar. Namun, sejak tahun 1970-an berkembang suatu teknologi yang dapat diterapkan sebagai pendekatan dalam mengatasi masalah tersebut melalui isolasi dan manipulasi terhadap gen yang bertanggung jawab atas ekspresi protein tertentu atau pembentukan suatu produk.
Teknologi yang dikenal sebagai teknologi DNA rekombinan, atau dengan istilah yang lebih populer rekayasa genetika, ini melibatkan upaya perbanyakan gen tertentu di dalam suatu sel yang bukan sel alaminya sehingga sering pula dikatakan sebagai kloning gen. Banyak definisi telah diberikan untuk mendeskripsikan pengertian teknologi DNA rekombinan. Salah satu di antaranya, yang mungkin paling representatif, menyebutkan bahwa teknologi DNA rekombinan adalah pembentukan kombinasi materi genetik yang baru dengan cara penyisipan molekul DNA ke dalam suatu vektor sehingga memungkinkannya untuk terintegrasi dan mengalami perbanyakan di dalam suatu sel organisme lain yang berperan sebagai sel inang.
Teknologi DNA rekombinan mempunyai dua segi manfaat. Pertama, dengan mengisolasi dan mempelajari masing-masing gen akan diperoleh pengetahuan tentang fungsi dan mekanisme kontrolnya. Kedua, teknologi ini memungkinkan diperolehnya produk gen tertentu dalam waktu lebih cepat dan jumlah lebih besar daripada produksi secara konvensional.
Pada dasarnya upaya untuk mendapatkan suatu produk yang diinginkan melalui teknologi DNA rekombinan melibatkan beberapa tahapan tertentu. Tahapan-tahapan tersebut adalah isolasi DNA genomik/kromosom yang akan diklon, pemotongan molekul DNA menjadi sejumlah fragmen dengan berbagai ukuran, isolasi DNA vektor, penyisipan fragmen DNA ke dalam vektor untuk menghasilkan molekul DNA rekombinan, transformasi sel inang menggunakan molekul DNA rekombinan, reisolasi molekul DNA rekombinan dari sel inang, dan analisis DNA rekombinan.
Isolasi DNA
Isolasi DNA diawali dengan perusakan dan atau pembuangan dinding sel, yang dapat dilakukan baik dengan cara mekanis seperti sonikasi, tekanan tinggi, beku-leleh maupun dengan cara enzimatis seperti pemberian lisozim. Langkah berikutnya adalah lisis sel. Bahan-bahan sel yang relatif lunak dapat dengan mudah diresuspensi di dalam medium bufer nonosmotik, sedangkan bahan-bahan yang lebih kasar perlu diperlakukan dengan deterjen yang kuat seperti triton X-100 atau dengan sodium dodesil sulfat (SDS). Pada eukariot langkah ini harus disertai dengan perusakan membran nukleus. Setelah sel mengalami lisis, remukan-remukan sel harus dibuang. Biasanya pembuangan remukan sel dilakukan dengan sentrifugasi. Protein yang tersisa dipresipitasi menggunakan fenol atau pelarut organik seperti kloroform untuk kemudian disentrifugasi dan dihancurkan secara enzimatis dengan proteinase. DNA yang telah dibersihkan dari protein dan remukan sel masih tercampur dengan RNA sehingga perlu ditambahkan RNAse untuk membersihkan DNA dari RNA. Molekul DNA yang telah diisolasi tersebut kemudian dimurnikan dengan penambahan amonium asetat dan alkohol atau dengan sentrifugasi kerapatan menggunakan CsCl. Teknik isolasi DNA tersebut dapat diaplikasikan, baik untuk DNA genomik maupun DNA vektor, khususnya plasmid. Untuk memilih di antara kedua macam molekul DNA ini yang akan diisolasi dapat digunakan dua pendekatan. Pertama, plasmid pada umumnya berada dalam struktur tersier yang sangat kuat atau dikatakan mempunyai bentuk covalently closed circular (CCC), sedangkan DNA kromosom jauh lebih longgar ikatan kedua untainya dan mempunyai nisbah aksial yang sangat tinggi. Perbedaan tersebut menyebabkan DNA plasmid jauh lebih tahan terhadap denaturasi apabila dibandingkan dengan DNA kromosom. Oleh karena itu, aplikasi kondisi denaturasi akan dapat memisahkan DNA plasmid dengan DNA kromosom.
Pendekatan kedua didasarkan atas perbedaan daya serap etidium bromid, zat pewarna DNA yang menyisip atau melakukan interkalasi di sela-sela basa molekul DNA. DNA plasmid akan menyerap etidium bromid jauh lebih sedikit daripada jumlah yang diserap oleh DNA kromosom per satuan panjangnya. Dengan demikian, perlakuan menggunakan etidium bromid akan menjadikan kerapatan DNA kromosom lebih tinggi daripada kerapatan DNA plasmid sehingga keduanya dapat dipisahkan melalui sentrifugasi kerapatan.
Enzim Restriksi
Tahap kedua dalam kloning gen adalah pemotongan molekul DNA, baik genomik maupun plasmid. Perkembangan teknik pemotongan DNA berawal dari saat ditemukannya sistem restriksi dan modifikasi DNA pada bakteri E. coli, yang berkaitan dengan infeksi virus atau bakteriofag lambda (l). Virus l digunakan untuk menginfeksi dua strain E. coli, yakni strain K dan C.  Jika l yang telah menginfeksi strain C diisolasi dari strain tersebut dan kemudian digunakan untuk mereinfeksi strain C, maka akan diperoleh l progeni (keturunan) yang lebih kurang sama banyaknya dengan jumlah yang diperoleh dari infeksi pertama. Dalam hal ini, dikatakan bahwa efficiency of plating (EOP) dari strain C ke strain C adalah 1.  Namun, jika l yang diisolasi dari strain C digunakan untuk menginfeksi strain K, maka nilai EOP-nya hanya 10-4. Artinya, hanya ditemukan l progeni sebanyak 1/10.000 kali jumlah yang diinfeksikan. Sementara itu, l yang diisolasi dari strain K mempunyai nilai EOP sebesar 1, baik ketika direinfeksikan pada strain K maupun pada strain C. Hal ini terjadi karena adanya sistem restriksi/modifikasi (r/m) pada strain K.
Pada waktu bakteriofag l yang diisolasi dari strain C diinfeksikan ke strain K, molekul DNAnya dirusak oleh enzim endonuklease restriksi yang terdapat di dalam strain K. Di sisi lain, untuk mencegah agar enzim ini tidak merusak DNAnya sendiri, strain K juga mempunyai sistem modifikasi yang akan menyebabkan metilasi beberapa basa pada sejumlah urutan tertentu yang merupakan tempat-tempat pengenalan (recognition sites) bagi enzim restriksi tersebut. DNA bakteriofag l yang mampu bertahan dari perusakan oleh enzim restriksi pada siklus infeksi pertama akan mengalami modifikasi dan memperoleh kekebalan terhadap enzim restrisksi tersebut. Namun, kekebalan ini tidak diwariskan dan harus dibuat pada setiap akhir putaran replikasi DNA. Dengan demikian, bakteriofag l yang diinfeksikan dari strain K ke strain C dan dikembalikan lagi ke strain K akan menjadi rentan terhadap enzim restriksi.
Metilasi hanya terjadi pada salah satu di antara kedua untai molekul DNA. Berlangsungnya metilasi ini demikian cepatnya pada tiap akhir replikasi hingga molekul DNA baru hasil replikasi tidak akan sempat terpotong oleh enzim restriksi. Enzim restriksi dari strain K telah diisolasi dan banyak dipelajari. Selanjutnya, enzim ini dimasukkan ke dalam suatu kelompok enzim yang dinamakan enzim restriksi tipe I.  Banyak enzim serupa yang ditemukan kemudian pada berbagai spesies bakteri lainnya.
Pada tahun 1970 T.J. Kelly menemukan enzim pertama yang kemudian dimasukkan ke dalam kelompok enzim restriksi lainnya, yaitu enzim restriksi tipe II. Ia mengisolasi enzim tersebut dari bakteri Haemophilus influenzae strain Rd, dan sejak saat itu ditemukan lebih dari 475 enzim restriksi tipe II dari berbagai spesies dan strain bakteri. Semuanya sekarang telah menjadi salah satu komponen utama dalam tata kerja rekayasa genetika.
Enzim restriksi tipe II antara lain mempunyai sifat-sifat umum yang penting sebagai berikut:
1.      mengenali urutan tertentu sepanjang empat hingga tujuh pasang basa di dalam molekul DNA
2.      memotong kedua untai molekul DNA di tempat tertentu pada atau di dekat tempat pengenalannya
3.      menghasilkan fragmen-fragmen DNA dengan berbagai ukuran dan urutan basa.
Pemberian nama kepada enzim restriksi mengikuti aturan sebagai berikut. Huruf pertama adalah huruf pertama nama genus bakteri sumber isolasi enzim, sedangkan huruf kedua dan ketiga masing-masing adalah huruf pertama dan kedua nama petunjuk spesies bakteri sumber tersebut. Huruf-huruf tambahan, jika ada, berasal dari nama strain bakteri, dan angka romawi digunakan untuk membedakan enzim yang berbeda tetapi diisolasi dari spesies yang sama.
Tempat pemotongan pada kedua untai DNA sering kali terpisah sejauh beberapa pasang basa. Pemotongan DNA dengan tempat pemotongan semacam ini akan menghasilkan fragmen-fragmen dengan ujung 5’ yang runcing karena masing-masing untai tunggalnya menjadi tidak sama panjang. Dua fragmen DNA dengan ujung yang runcing akan mudah disambungkan satu sama lain sehingga ujung runcing sering pula disebut sebagai ujung lengket (sticky end) atau ujung kohesif.
Hal itu berbeda dengan enzim restriksi seperti Hae III, yang mempunyai tempat pemotongan DNA pada posisi yang sama. Kedua fragmen hasil pemotongannya akan mempunyai ujung 5’ yang tumpul karena masing-masing untai tunggalnya sama panjangnya. Fragmen-fragmen DNA dengan ujung tumpul (blunt end) akan sulit untuk disambungkan. Biasanya diperlukan perlakuan tambahan untuk menyatukan dua fragmen DNA dengan ujung tumpul, misalnya pemberian molekul linker, molekul adaptor, atau penambahan enzim deoksinukleotidil transferase untuk menyintesis untai tunggal homopolimerik 3’.
Ligasi Molekul – molekul DNA
Pemotongan DNA genomik dan DNA vektor menggunakan enzim restriksi harus menghasilkan ujung-ujung potongan yang kompatibel. Artinya, fragmen-fragmen DNA genomik nantinya harus dapat disambungkan (diligasi) dengan DNA vektor yang sudah berbentuk linier.
Ada tiga cara yang dapat digunakan untuk meligasi fragmen-fragmen DNA secara in vitro. Pertama, ligasi menggunakan enzim DNA ligase dari bakteri. Kedua, ligasi menggunakan DNA ligase dari sel-sel E. coli yang telah diinfeksi dengan bakteriofag T4 atau lazim disebut sebagai enzim T4 ligase. Jika cara yang pertama hanya dapat digunakan untuk meligasi ujung-ujung lengket, cara yang kedua dapat digunakan baik pada ujung lengket maupun pada ujung tumpul. Sementara itu, cara yang ketiga telah disinggung di atas, yaitu pemberian enzim deoksinukleotidil transferase untuk menyintesis untai tunggal homopolimerik 3’. Dengan untai tunggal semacam ini akan diperoleh ujung lengket buatan, yang selanjutnya dapat diligasi menggunakan DNA ligase.
Suhu optimum bagi aktivitas DNA ligase sebenarnya 37ºC. Akan tetapi, pada suhu ini ikatan hidrogen yang secara alami terbentuk di antara ujung-ujung lengket akan menjadi tidak stabil dan kerusakan akibat panas akan terjadi pada tempat ikatan tersebut.  Oleh karena itu, ligasi biasanya dilakukan pada suhu antara 4 dan 15ºC dengan waktu inkubasi (reaksi) yang diperpanjang (sering kali hingga semalam).
Pada reaksi ligasi antara fragmen-fragmen DNA genomik dan DNA vektor, khususnya plasmid, dapat terjadi peristiwa religasi atau ligasi sendiri sehingga plasmid yang telah dilinierkan dengan enzim restriksi akan menjadi plasmid sirkuler kembali. Hal ini jelas akan menurunkan efisiensi ligasi. Untuk meningkatkan efisiensi ligasi dapat dilakukan beberapa cara, antara lain penggunaan DNA dengan konsentrasi tinggi (lebih dari 100µg/ml), perlakuan dengan enzim alkalin fosfatase untuk menghilangkan gugus fosfat dari ujung 5’ pada molekul DNA yang telah terpotong, serta pemberian molekul linker, molekul adaptor, atau penambahan enzim deoksinukleotidil transferase untuk menyintesis untai tunggal homopolimerik 3’ seperti telah disebutkan di atas.
Transformasi Sel Inang
Tahap berikutnya setelah ligasi adalah analisis terhadap hasil pemotongan DNA genomik dan DNA vektor serta analisis hasil ligasi molekul-molekul DNA tersebut. menggunakan teknik elektroforesis. Jika hasil elektroforesis menunjukkan bahwa fragmen-fragmen DNA genomik telah terligasi dengan baik pada DNA vektor sehingga terbentuk molekul DNA rekombinan, campuran reaksi ligasi dimasukkan ke dalam sel inang agar dapat diperbanyak dengan cepat. Dengan sendirinya, di dalam campuran reaksi tersebut selain terdapat molekul DNA rekombinan, juga ada sejumlah fragmen DNA genomik dan DNA plasmid yang tidak terligasi satu sama lain. Tahap memasukkan campuran reaksi ligasi ke dalam sel inang ini dinamakan transformasi karena sel inang diharapkan akan mengalami perubahan sifat tertentu setelah dimasuki molekul DNA rekombinan.
Teknik transformasi pertama kali dikembangkan pada tahun 1970 oleh M. Mandel dan A. Higa, yang melakukan transformasi bakteri E. coli. Sebelumnya, transformasi pada beberapa spesies bakteri lainnya yang mempunyai sistem transformasi alami seperti Bacillus subtilis telah dapat dilakukan. Kemampuan transformasi B. subtilis pada waktu itu telah dimanfaatkan untuk mengubah strain-strain auksotrof (tidak dapat tumbuh pada medium minimal) menjadi prototrof (dapat tumbuh pada medium minimal) dengan menggunakan preparasi DNA genomik utuh. Baru beberapa waktu kemudian transformasi dilakukan menggunakan perantara vektor, yang selanjutnya juga dikembangkan pada transformasi E.coli
Hal terpenting yang ditemukan oleh Mandel dan Higa adalah perlakuan kalsium klorid (CaCl2) yang memungkinkan sel-sel E. coli untuk mengambil DNA dari bakteriofag l. Pada tahun 1972 S.N. Cohen dan kawan-kawannya menemukan bahwa sel-sel yang diperlakukan dengan CaCl2 dapat juga mengambil DNA plasmid. Frekuensi transformasi tertinggi akan diperoleh jika sel bakteri dan DNA dicampur di dalam larutan CaCl2 pada suhu 0 hingga 5ºC. Perlakuan kejut panas antara 37 dan 45ºC selama lebih kurang satu menit yang diberikan setelah pencampuran DNA dengan larutan CaCl2 tersebut dapat meningkatkan frekuensi transformasi tetapi tidak terlalu esensial. Molekul DNA berukuran besar lebih rendah efisiensi transformasinya daripada molekul DNA kecil.
Mekanisme transformasi belum sepenuhnya dapat dijelaskan. Namun, setidak-tidaknya transformasi melibatkan tahap-tahap berikut ini. Molekul CaCl2 akan menyebabkan sel-sel bakteri membengkak dan membentuk sferoplas yang kehilangan protein periplasmiknya sehingga dinding sel menjadi bocor. DNA yang ditambahkan ke dalam campuran ini akan membentuk kompleks resisten DNase dengan ion-ion Ca2+ yang terikat pada permukaan sel. Kompleks ini kemudian diambil oleh sel selama perlakuan kejut panas diberikan.



Seleksi Transforman dan Seleksi Rekombinan
Oleh karena DNA yang dimasukkan ke dalam sel inang bukan hanya DNA rekombinan, maka kita harus melakukan seleksi untuk memilih sel inang transforman yang membawa DNA rekombinan. Selanjutnya, di antara sel-sel transforman yang membawa DNA rekombinan masih harus dilakukan seleksi untuk mendapatkan sel yang DNA rekombinannya membawa fragmen sisipan atau gen yang diinginkan.  
Cara seleksi sel transforman akan pada dasarnya ada tiga kemungkinan yang dapat terjadi setelah transformasi dilakukan, yaitu : (1) sel inang tidak dimasuki DNA apa pun atau berarti transformasi gagal, (2) sel inang dimasuki vektor religasi atau berarti ligasi gagal, dan (3) sel inang dimasuki vektor rekombinan dengan/tanpa fragmen sisipan atau gen yang diinginkan. Untuk membedakan antara kemungkinan pertama dan kedua dilihat perubahan sifat yang terjadi pada sel inang. Jika sel inang memperlihatkan dua sifat marker vektor, maka dapat dipastikan bahwa kemungkinan kedualah yang terjadi.
Selanjutnya, untuk membedakan antara kemungkinan kedua dan ketiga dilihat pula perubahan sifat yang terjadi pada sel inang. Jika sel inang hanya memperlihatkan salah satu sifat di antara kedua marker vektor, maka dapat dipastikan bahwa kemungkinan ketigalah yang terjadi.
Seleksi sel rekombinan yang membawa fragmen yang diinginkan dilakukan dengan mencari fragmen tersebut menggunakan fragmen pelacak (probe), yang pembuatannya dilakukan secara in vitro menggunakan teknik reaksi polimerisasi berantai atau polymerase chain reaction (PCR). Pelacakan fragmen yang diinginkan antara lain dapat dilakukan melalui cara yang dinamakan hibridisasi koloni. Koloni-koloni sel rekombinan ditransfer ke membran nilon, dilisis agar isi selnya keluar, dibersihkan protein dan remukan sel lainnya hingga tinggal tersisa DNAnya saja. Selanjutnya, dilakukan fiksasi DNA dan perendaman di dalam larutan pelacak. Posisi-posisi DNA yang terhibridisasi oleh fragmen pelacak dicocokkan dengan posisi koloni pada kultur awal (master plate). Dengan demikian, kita bisa menentukan koloni-koloni sel rekombinan yang membawa fragmen yang diinginkan.



 

 


 



 

 







BAB III

PEMBAHASAN

Membuat Insulin Manusia dengan Teknik DNA Rekombinan

Sejak Banting dan Best menemukan hormon insulin pada tahun 1921, pasien diabetes mellitus yang mengalami peningkatan kadar gula darah disebabkan gangguan produksi insulin, telah diterapi dengan menggunakan insulin yang berasal dari kelenjar pankreas hewan.
Meskipun insulin sapi dan babi mirip dengan insulin manusia, namun komposisinya sedikit berbeda. Akibatnya, sejumlah sistem kekebalan tubuh pasien menghasilkan antibodi terhadap insulin babi dan sapi yang berusaha menetralkan dan mengakibatkan respon inflamasi pada tempat injeksi. Selain itu efek samping dari insulin sapi dan babi ini adalah kekhawatiran adanya komplikasi jangka panjang dari injeksi zat asing yang rutin.
Faktor-faktor ini menyebabkan peneliti mempertimbangkan untuk membuat Humulin dengan memasukkan gen insulin ke dalam vektor yang cocok, yaitu sel bakteri E. coli, untuk memproduksi insulin yang secara kimia identik dan dapat secara alami diproduksi. Hal ini telah dicapai dengan menggunakan teknologi DNA rekombinan.





http://myhealing.files.wordpress.com/2010/12/dna2.png?w=780Struktur insulin







Secara kimia, insulin adalah protein kecil sederhana yang terdiri dari 51 asam amino, 30 di antaranya merupakan satu rantai polipeptida, dan 21 lainnya yang membentuk rantai kedua. Kedua rantai dihubungkan oleh ikatan disulfida.
Kode genetik untuk insulin ditemukan dalam DNA di bagian atas lengan pendek dari kromosom kesebelas yang berisi 153 basa nitrogen (63 dalam rantai A dan 90 dalam rantai B). DNA yang membentuk kromosom, terdiri dari dua heliks terjalin yang dibentuk dari rantai nukleotida, masing-masing terdiri dari gula deoksiribosa, fosfat dan nitrogen. Ada empat basa nitrogen yang berbeda yaitu adenin, timin, sitosin dan guanin. Sintesis protein tertentu seperti insulin ditentukan oleh urutan dasar tersebut yang diulang.


Proses produksi


http://myhealing.files.wordpress.com/2010/12/dna1.png?w=780
 











Escherrichia coli (E. coli), penghuni saluran pencernaan manusia, adalah ‘pabrik’ yang digunakan dalam rekayasa genetika insulin. Ketika bakteri berreproduksi, gen insulin direplikasi bersama dengan plasmid. E. coli seketika memproduksi enzim yang dengan cepat mendegradasi protein asing seperti insulin. Hal tersebut dapat dicegah dengan cara menggunakan E. coli strain mutan yang sedikit mengandung enzim ini. Pada E. coli, B-galaktosidase adalah enzim yang mengontrol transkripsi gen. Untuk membuat bakteri memproduksi insulin, gen insulin perlu terikat pada enzim ini.
Enzim restriksi secara alami diproduksi oleh bakteri. Enzim restriksi bertindak seperti pisau bedah biologi, hanya mengenali rangkaian nukleotida tertentu, misal salah satunya rangkaian kode untuk insulin. Hal tersebut memungkinkan peneliti untuk memutuskan pasangan basa nitrogen tertentu dan menghapus bagian DNA yang berisi kode genetik dari kromosom sebuah organisme sehingga dapat memproduksi insulin. Sedangkan DNA ligase adalah suatu enzim yang berfungsi sebagai perekat genetik dan pengelas ujung nukleotida.


http://myhealing.files.wordpress.com/2010/12/dna-ligase.png?w=780
 










Langkah pertama pembuatan humulin adalah mensintesis rantai DNA yang membawa sekuens nukleotida spesifik yang sesuai karakteristik rantai polipeptida A dan B dari insulin. Urutan DNA yang diperlukan dapat ditentukan karena komposisi asam amino dari kedua rantai telah dipetakan. Enam puluh tiga nukleotida yang diperlukan untuk mensintesis rantai A dan sembilan puluh untuk rantai B, ditambah kodon pada akhir setiap rantai yang menandakan pengakhiran sintesis protein.
Antikodon menggabungkan asam amino, metionin, kemudian ditempatkan di setiap awal rantai yang memungkinkan pemindahan protein insulin dari asam amino sel bakteri itu. ‘Gen’ sintetik rantai A dan B kemudian secara terpisah dimasukkan ke dalam gen untuk enzim bakteri, B-galaktosidase, yang dibawa dalam plasmid vektor tersebut. Pada tahap ini, sangat penting untuk memastikan bahwa kodon gen sintetik kompatibel dengan B-galaktosidase. Plasmid rekombinan tersebut kemudian dimasukkan ke dalam sel E. coli.
http://myhealing.files.wordpress.com/2010/12/plasmid.png?w=780
Foto mikroskop elektron plasmid bakteri E. coli
Praktis penggunaan teknologi DNA rekombinan dalam sintesis insulin manusia membutuhkan jutaan salinan plasmid bakteri yang telah digabungkan dengan gen insulin dalam rangka untuk menghasilkan insulin. Gen insulin diekspresikan bersama dengan sel mereplikasi galaktosidase-B di dalam sel yang sedang menjalani mitosis.
http://myhealing.files.wordpress.com/2010/12/mitosis.png?w=780
Protein yang terbentuk, sebagian terdiri dari B-galaktosidase, bergabung ke salah satu rantai insulin A atau B. Rantai insulin A dan rantai B kemudian diekstraksi dari fragmen B-galaktosidase dan dimurnikan.
http://myhealing.files.wordpress.com/2010/12/dna19new1.png?w=780
Kedua rantai dicampur dan dihubungkan kembali dalam reaksi yang membentuk jembatan silang disulfida, menghasilkan Humulin murni (insulin manusia sintetis).
http://myhealing.files.wordpress.com/2010/12/humulin.png?w=780
Implikasi biologis dari rekayasa genetika Humulin rekombinan
Humulin merupakan protein hewani yang dibuat dari bakteri sedemikian rupa sehingga strukturnya benar-benar identik dengan molekul alami. Hal ini akan mengurangi kemungkinan komplikasi yang disebabkan produksi antibodi oleh tubuh manusia. Dalam studi kimia dan farmakologi, insulin rekombinan DNA manusia yang diproduksi secara komersil telah terbukti bisa dibedakan dari insulin pankreas manusia. Awalnya, kesulitan utama yang dihadapi adalah kontaminasi produk akhir oleh sel inang, sehingga meningkatkan resiko kontaminasi dalam kaldu fermentasi. Bahaya ini diatasi dengan ditemukannya proses pemurnian. Ketika dilakukan tes pada produk akhir insulin, termasuk teknik terbaik radio-immuno assay, tidak ada ‘kotoran’ yang terdeteksi.
Seluruh prosedur, sekarang dilakukan dengan menggunakan sel ragi sebagai media pertumbuhan, karena sel ragi dapat menghasilkan sebuah molekul insulin manusia yang hampir lengkap dengan struktur tiga dimensi yang sempurna. Ini meminimalkan kebutuhan untuk prosedur pemurnian kompleks dan mahal.
Pemberian Insulin Pada Penderita Diabetes Mellitus
Insulin adalah suatu hormon yang secara alami dihasilkan oleh pulau pulau langerhans pankreas. Insulin memungkinkan sel – sel tubuh mengabsorbsi glukosa dari darah untuk digunakan sebagai sumber energy, diubah menjadi molekul lain yang diperlukan, atau untuk disimpan. Insulin juga merupakan sinyal control untama konversi glukosa menjadi glikogen untuk penyimpanan internal di hati dan sel otot.  Bila jumlah insulin yang tersedia tidak mencukupi, sel tidak merespon adanya insulin (tidak sensitif atau resisten), atau bila insulin itu sendiri tidak diproduksi oleh sel – sel beta akibat rusaknya sel–sel beta pada pancreas, maka glukosa tidak dapat dimanfaatkan oleh sel tubuh ataupun disimpan dalam bentuk cadangan makanan dalam hati maupun sel otot. Akibat yang terjadi adalah peningkatan kadar glukosa dalam darah, penurunan sintesis protein, dan gangguan proses – proses metabolisme dalam tubuh. Hormon ini bekerja mengatur kadar glukosa dalam darah dengan cara mempermudah masuknya glukosa ke dalam semua jaringan tubuh. Jika jumlah insulin yang diproduksi tidak memadai, kadar glukosa dalam darah akan meningkat dan sebagai akibatnya glukosa akan di ekskresi dalam urine. Defisiensi insulin dalam manusia menyebabkan penyakit genetik diabetes mellitus jenis I atau disebut IDDM (Insulin Dependent Diabetes Mellitus). Bila tidak diobati penyakit ini akan membahayakan kehamilan, bahkan dapat menyebabkan kematian. Adanya insulin yang dapat membantu mengatur kadar glukosa darah merupakan salah satu tanda kekuasaanNya. Hal ini tercantum dalam firman Allah surat Al furqan ayat 2 yang artinya
“ yang kepunyaanNya lah kerajaan langit dan bumi, dan dia tidak mempunyai anak, dan tidak ada sekutu bagi Nya dalam kekuasaan (Nya), dan dia telah menviptakan segala sesuatu, dan dia menetapkan ukuran – ukurannya dengan serapi – rapinya.”
Pemberian injeksi insulin secara teratur dalam meningkatkan kadar insulin dalam darah penderita dapat meminimumkan komplikasi. Pengobatan ini hanya mungkin dilaksanakan bila insulin tersedia dalam jumlah besar dengan kemurnian dan mutu yang baik. Pemberian insulin kepada penderita diabetes hanya bisa dilakukan dengan cara suntikan, jika diberikan melalui oral insulin akan rusak didalam lambung. Setelah disuntikan, insulin akan diserap kedalam aliran darah dan dibawa ke seluruh tubuh. Disini insulin akan bekerja menormalkan kadar gula darah (blood glucose) dan merubah glucose menjadi energi. Perlu diperhatikan daerah mana saja yang dapat dijadikan tempat menyuntikkan insulin. Bila kadar glukosa darah tinggi, sebaiknya disuntikkan di daerah perut dimana penyerapan akan lebih cepat. Namun bila kondisi kadar glukosa pada darah rendah, hindarilah penyuntikkan pada  daerah perut. Secara urutan, area proses penyerapan paling cepat adalah dari perut, lengan atas dan paha. Insulin akan lebih cepat diserap apabila daerah suntikkan digerak-gerakkan. Penyuntikkan insulin pada satu daerah yang sama dapat mengurangi variasi penyerapan. Penyuntikkan insulin selalu di daerah yang sama dapat merangsang terjadinya perlemakan dan menyebabkan gangguan penyerapan insulin. Daerah suntikkan sebaiknya berjarak 1 inchi (+ 2,5cm)  dari daerah sebelumnya. Lakukanlah rotasi di dalam satu daerah selama satu minggu, lalu baru pindah ke daerah yang lain.
Kerja insulin dalam tubuh dipengaruhi oleh beberapa faktor di antaranya :
1. Dosis
Semakin tinggi dosisnya maka semakin cepat aksinya.
2. Tempat injeksi
Pada umumnya insulin diberikan dengan injeksi menembus kulit. Pada pemberian intravena aksinya cepat, pad transdermal atau secara subkutan maka pada otot terjadi degradasi insulin 20-25%. Makanya harus diperhitungkan untuk mendapatkan dosis yang tepat. Kebanyakan insulin diinjeksikan pada perut (intrperional). Jarum untuk injeksi insulin kecil sekali dan pendek (0,5 - 1 cm). Dapat juga menggunakan implant pada dada yang dapat mensuplai insulin sedikit demi sedkit.
3. Kehadiran antibodi insulin
Hal ini terutama pada penggunaan hewan sebagai insulin. Jika digunakan insulin dari luar dikhawatirkan terjadi reaksi antigen antibodi maupun perusakan lain, kecuali pada penderita autoimun.
4. Aktivitas fisik
Semakin banyak aktivitas fisik yang kita lakukan maka kita perlu energi  (dari glukosa) yang semakin besar sehingga tidak perlu aksi insulin yang ekstra untuk mengubah glukosa menjadi glikogen (insulin yang diperlukan semakin sedikit).
Insulin dapat dibedakan atas dasar:
  1. Waktu kerja insulin (onset), yaitu waktu mulai timbulnya efek insulin sejak disuntikan.
  2. Puncak kerja insulin, yaitu waktu tercapainya puncak kerja insulin.
  3. Lama kerja insulin (durasi), yaitu waktu dari timbulnya efek insulin sampai hilangnya efek insulin.
Terdapat 4 buah insulin eksogen yang diproduksi dan dikategorikan berdasarkan puncak dan jangka waktu efeknya. Berikut keterangan jenis insulin eksogen :
1. Insulin Eksogen kerja cepat.
Bentuknya berupa larutan jernih, mempunyai onset cepat dan durasi pendek. Yang termasuk di sini adalah insulin regular (Crystal Zinc Insulin / CZI ). Saat ini dikenal 2 macam insulin CZI, yaitu dalam bentuk asam dan netral. Preparat yang ada antara lain : Actrapid, Velosulin, Semilente. Insulin jenis ini diberikan 30 menit sebelum makan, mencapai puncak setelah 1– 3 macam dan efeknya dapat bertahan samapai 8 jam.
2. Insulin Eksogen  kerja sedang.
Bentuknya terlihat keruh karena berbentuk hablur-hablur kecil, dibuat dengan menambahkan bahan yang dapat memperlama kerja obat dengan cara memperlambat penyerapan insulin kedalam darah. Yang dipakai saat ini adalah Netral Protamine Hegedorn ( NPH ),MonotardÒ, InsulatardÒ. Jenis ini awal kerjanya adalah 1.5 – 2.5 jam. Puncaknya tercapai dalam 4 – 15 jam dan efeknya dapat bertahan sampai dengan 24 jam.
3. Insulin Eksogen campur antara kerja cepat & kerja sedang (Insulin premix)
Yaitu insulin yang mengandung insulin kerja cepat dan insulin kerja sedang. Insulin ini mempunyai onset cepat dan durasi sedang (24 jam). Preparatnya: Mixtard 30 / 40
4. Insulin Eksogen kerja panjang (lebih dari 24 jam).
Merupakan campuran dari insulin dan protamine, diabsorsi dengan lambat dari tempat penyuntikan sehingga efek yang dirasakan cukup lam, yaitu sekitar 24 – 36 jam. Preparat: Protamine Zinc Insulin ( PZI ), Ultratard.
Karakteristik farmakokinetik: pendek, intermediet dan long-acting sediaan insulin
Kategori
Onset (jam setelah pemberian)
Aktivitas puncak (jam setelah pemberian)
Durasi (jam)
Aksi pendek
0,5-1
2-5
6-8
Aksi menengah
2
4-12
Sampai 24
Aksi lama
4
10-20
Sampai 36
Pemberian insulin:
- short acting              : diberi 0,5-1 jam sebelum maakan
- intermediet acting   : diberi 2 jam sebelum makan
- long acting               : diberi 4 jam sebelum makan
Pemberian preparat insulin perlu diatur seperti di atas supaya saat kadar glukosa dalam tubuh tinggi (mencapai puncak) maka kadar insulin juga sudah tinggi, jadi harus seimbang. jika kadar insulin tinggi kadar glukosa darah rendah maka akan terjadi shock. Jika kadar insulin rendah tetapi kada glukosa darah tinggi maka terjadi kelebihan gula (diabetes).










BAB IV
PENUTUP
KESIMPULAN
Insulin mempunyai beberapa pengaruh dalam jaringan tubuh. Insulin menstimulasi pemasukan asam amino kedalam sel kemudian meningkatkan sintesa protein. Insulin meningkatkan penyimpanan lemak dan mencegah penggunaan lemak sebagai bahan energi. Insulin menstimulasi pemasukan glukosa kedalam sel untuk digunakan sebagai sumber energi dan membantu penyimpanan glikogen didalam sel otot dan hati. Insulin endogin adalah insulin yang dihasilkan oleh pankreas, sedangkan insulin eksogin adalah insulin yang disuntikkan dan merupakan suatu produk farmasi.










DAFTAR PUSTAKA
1.      Susan L.Elrod.,Ph.D and William D.,Ph.D Schaum’s Genetika Edisi IV, Erlangga:Jakarta
2.      http://id.shvoong.com/medicine-and-health
4.      Ansel,Howard C. Pengantar Bentuk Sediaan Farmasi Edisi keempat.2005.UIP:Jakarta

1 komentar:

  1. Casino Tycoon, LLC: Gambling Company Profile, Revenue, Form
    Company Description: Gambling 구리 출장샵 Company provides 안산 출장샵 business intelligence, tools, and resources 전라남도 출장안마 to help businesses to 강원도 출장안마 operate their business efficiently.ADDRESS: 전주 출장샵 MOHEGAN CITY, P

    BalasHapus